Stefan Blowing Impacts on Unsteady MHD Flow of Nanofluid over a Stretching Sheet with Electric Field, Thermal Radiation and Activation Energy
نویسندگان
چکیده
In this paper, a mathematical model is established to examine the impacts of Stefan blowing on unsteady magnetohydrodynamic (MHD) flow an electrically conducting nanofluid over stretching sheet in existence thermal radiation, Arrhenius activation energy and chemical reaction. It proposed use Buongiorno synchronize effects magnetic electric fields velocity temperature enhance conductivity. We utilized suitable transformation simplify governing partial differential equation (PDEs) into set nonlinear ordinary equations (ODEs). The obtained were solved numerically with help Runge–Kutta 4th order using shooting technique MATLAB environment. impact developing parameters characteristics analyzed appropriately through graphs tables. velocity, temperature, nanoparticle concentration profiles decrease for various values involved parameters, such as hydrodynamic slip, slip solutal slip. profile declines manifestation reaction rate, whereas reverse demeanor noted energy. validation was conducted earlier works published literature, results found be incredibly consistent.
منابع مشابه
Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation
The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...
متن کاملThe Influence of Thermal Radiation on Mixed Convection MHD Flow of a Casson Nanofluid over an Exponentially Stretching Sheet
The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...
متن کاملMHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink
The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...
متن کاملMHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet
In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...
متن کاملImpact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet
The present numerical attempt deals the sway to transfer of heat and mass characteristics on the time-dependent hydromagnetic boundary layer flow of a viscous fluid over an exponentially inclined preamble stretching. Furthermore, the role of viscous heating, thermal radiation, uneven energy gain or loss, velocity slip, thermal slip and solutal slips are depicted. The prevailing time-dependent P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Coatings
سال: 2021
ISSN: ['2079-6412']
DOI: https://doi.org/10.3390/coatings11091048